

**STUDY OF THE PHYTOTOXIC POTENTIAL OF SPHAGNETICOLA TRILOBATA ON
IPOMOEA SPP AND LACTUCA SATIVA.**

Olatoundji Abdou Rachidi Tidjani ^{1*}, Anne Caroline Candido Gomes ²

Carlos Rodrigues Pereira ³, Naomi Kato Simas ⁴

rachidit24@gmail.com

1-Departamento de Engenharia de Biossistemas, UFF, Rua Passo da Pátria, 156 bloco D sala 236 - São Domingos - Niterói - RJ - 24210-240, Brazil. 2- Instituto Federal do Rio de Janeiro, IFRJ, R. Sen. Furtado, 121/125 - Maracanã, Rio de Janeiro - RJ, 20270-021, Brazil, 3- Faculdade de Farmacia, LaProNEB/UFRJ, Avenida Carlos Chagas Filho, 373 Centro de Ciências da Saúde, Rio de Janeiro - RJ, 21941-902, Brazil

INTRODUCTION: The excessive use of chemical herbicides contributes to environmental degradation and biodiversity loss. Allelopathy emerges as a sustainable alternative, and *Sphagneticola trilobata*, a plant in the Asteraceae family, stands out for its allelopathic potential, containing phenolic and flavonoid compounds with inhibitory effects on other plants.

OBJECTIVE: To evaluate the phytotoxic effects of aqueous extracts of *S. trilobata* on model species *Ipomoea spp.* and *Lactuca sativa*, aiming to verify effects of growth stimulation or inhibition in addition to effects of impacts on non-target organisms.

METHODOLOGY: Dried leaves of *S. trilobata* were extracted in distilled water (12.5, 25, and 50 g/500 mL). Bioassays were conducted with *Ipomoea* and *Lactuca sativa* seeds exposed to different concentrations (25%, 50%, 75%, 100%) for 7 days in B.O.D.. Germination and root and hypocotyl growth/inhibition were evaluated by calculating the growth/inhibition index. Analysis of variance (ANOVA) was performed for the biological assays presented. The significance level was set at * $p<0.05$. Results were expressed as mean \pm standard deviation. Statistical analyses were performed using GraphPadPrism 5.0 software.

RESULTS: *S. trilobata* extracts exhibited dose-dependent effects. Lower concentrations (between 15.625 and 62.5 mg/L) significantly stimulated root and hypocotyl growth, particularly in *Ipomoea* and *Lactuca sativa*. Higher concentrations (≥ 125 mg/L), on the other hand, inhibited this growth, demonstrating a potential hormetic effect. Roots were more sensitive than hypocotyls.

CONCLUSION: *Sphagneticola trilobata* demonstrated phytotoxic potential with biphasic effects—stimulation at low doses and inhibition at high doses. This highlights its potential use as a natural bioherbicide, contributing to more sustainable agricultural practices.

Keywords: *Sphagneticola trilobata*, phytotoxic, *Ipomoea Spp*, *Lactuca sativa*

